Most stepper motors are labeled. The major points of interest include the voltage, resistance and the number of degrees per step. Knowing the number of degrees per step is vital for configuring the software to properly control the machine later on. For a three axis machine, at the very least you'll want the X and Y axis to both have identical motors. It's not the end of the world if they don't match, but it's more of a pain later on.
The drive screw is the next piece of our project. Commercial units use linear ball screws or linear gears. The commercial parts aren't cheap, but you can get away with some 1/4-inch threaded rod from the hardware store. Instead of anti-backlash nuts, we'll use these handy 1-inch long 1/4-inch nuts. Just about every hardware store has them, and they produce very little play. Try out the hardware at the store because defects in the nut or rod will produce drag that's easily noticeable by spinning the nut on the rod.
To couple the rod to the motor shaft, we'll use vinyl tubing with a pair of collars. The tubing is 1/4-inch inner diameter and prevents binding by allowing some play between the rod and the motor. You can get suitable collars from a model airplane store (The hardware store had some, but they were overpriced). Alternatively, you can make your own like we did from nylon bushings and hex screws.
it is still continue..i will put..u just check it regularly...
No comments:
Post a Comment